
Expressive Models for

Monadic Constraint Programming

Pieter Wuille and Tom Schrijvers⋆

Department of Computer Science, K.U.Leuven, Belgium
FirstName.LastName @cs.kuleuven.be

Abstract. This paper presents a new FD-specific modeling front-end
for the Monadic Constraint Programming framework for Haskell. A more
declarative interface was introduced, supporting reified constraints among
others, as well as an optimizing compilation scheme to prevent the in-
efficiencies that high-level modeling typically introduces. Problems can
be solved directly at run-time, or translated to C++ code for later solv-
ing. Benchmarks show that solving efficiency approximates that of hand-
coded Gecode programs.

1 Introduction

The Monadic Constraint Programming framework [7] integrates constraint pro-
gramming (CP) in the functional programming language Haskell [5] as a deeply
embedded domain specific language (EDSL). This means it does not require
compiler-modifications. Rather it is a library that defines functions and opera-
tors for working with CP. Because of Haskell’s support for high-level abstrac-
tions, for user-defined operators as well as for overloading predefined ones, it
is a highly suitable host for embedding a very declarative constraint modelling
language.

Not being tied into the language itself also does provide for greater flexibility.
It allows us to use the constraint model — either a specific problem instance or
a whole problem class — for more than outright solving. For instance, trans-
formations can be applied to the model for generic optimization purposes or to
better target a particular constraint solver. Moreover, the model does not have
to be solved directly, but can drive a code generator that produces a stand-alone
executable for solving at a later time.

This paper reports on the FD-MCP module of the framework, specific to
finite domain (FD) solvers. We introduce a more declarative modeling front-end,
as well as an optimizing compilation scheme that eliminates the inefficiencies of
high-level models.

In contrast to MCP’s generic interface, which is parametric in the constraint
domain, FD-MCP[10] provides a finite-domain intermediate layer. It extends
MCP with a common FD-specific syntax, without forcing a particular FD solver
or search strategy. Internally the FD layer converts high-level, complex and

⋆ Post-Doctoral Researcher of the Research Foundation–Flanders (FWO-Vlaanderen).

solver-independent constraints to the low-level constraints supported by a par-
ticular FD solver.

On the one hand, this allows the development of solver-independent models,
model transformations (e.g., for optimization) and model abstractions (capturing
frequently used patterns). On the other hand, specific solvers may focus on
the efficient processing of their constraint primitives without worrying about
modeling infrastructure.

1.1 Contributions

This paper presents improvements in the front-end and processing part of FD-
MCP.

– Expression-based modeling language The concept of constraints has
been absorbed into that of expressions. This means that constraints can be
used wherever boolean expressions are required and vice versa. This provides
for natural support of reified constraints without special syntax.
Furthermore, integer arrays and array expressions have been added. Finally,
higher-order combinators (such as map, fold, forall, . . .) can be used first-
class in these expressions.
The result is a rich, concise and declarative constraint modeling language.

– Aggressive compilation

To compile these new high-level expressions to solver-specific constraints, a
new compilation scheme was designed and implemented.
Compilation proceeds in separate stages, using an intermediate graph rep-
resentation, and avoids as much as possible the use of reified constraints or
redundant variables. Optimizations are possible at each stage, resulting in
far more efficient solving comparable to hand-written low-level models, as
benchmarks show.

The generic compilation scheme is presented in Section 2, while the inte-
gration with the FD-MCP framework is given in Section 3. Benchmarks were
performed to experimentally verify the efficiency, as can be seen in Section 4.

1.2 Example Models

As an introductory example, here is the model for the standard n-queens problem
in FD-MCP:

1 model n = exists $ \p -> do -- request an array p

2 size p @= n -- whose size is n

3 p ‘allin‘ (0,n-1) -- all of p are in [0..n-1]

4 allDiff p -- all of p are different

5 loopall (0,n-2) $ \i -> do -- foreach i in [0..n-2]

6 loopall (i+1,n-1) $ \j -> do -- foreach j in [i+1..n-1]

7 (p!i) + i @/= (p!j) + j -- p[i]+i != p[j]+j

8 (p!i) - i @/= (p!j) - j -- p[i]-i != p[j]-j

To illustrate the use of reified constraints and possible abstractions, this is
how one can define a count (or cardinality) constraint in a separate function,
and use it:

1 count col val =

2 csum $ cmap (\v -> channel (v @= val)) col

3

4 count col val @= n ...

Here count takes an integer array and an integer as input, and returns how often
that value occurs in the array. csum takes an array of expressions (cmap (\v ->

channel (v @= val)) col in this case), and returns an expression representing
its sum. cmap takes an array (col here), and a function and returns the array
that represents the application of that function on each element of the array.
The function \v -> channel (v @= val) is a lambda expression that takes an
argument v and returns the integer 1 when v equals val and 0 otherwise. Line
4 shows how to call the defined count function in a model.

2 Compilation scheme

The compilation scheme is responsible for converting (conjunctions of) high-level
constraints — represented by boolean expressions over variables — to low-level,
solver-specific variables and constraints.

Often there are many ways to translate a high-level model to a low-level one,
with varying efficiency for solving. In fact, the genericity of high-level modeling
hides many critical aspects from the user, resulting in poor performance when
using a naive approach. Optimizing transformations on the model are performed
to overcome this.

One reason for poor naive performance is that primitives of the high-level
modeling language do not necessarily coincide with those of the low-level con-
straint system we are translating for. Sometimes, combinations of constraints in
the high-level model — connected using auxiliary variables — can be converted
to a single more specific constraint for the low-level system. For example, when a
global sum constraint is provided by the underlying solver, it is typically better
to translate a = b+ e ∧ e = c+ d to a single a = sum([b, c, d]) constraint, elimi-
nating the e variable, unless it is used in other constraints, needed for branching,
or used as a solution.

On the other hand, sometimes it may be necessary to introduce additional
variables when the low-level system lacks primitives provided by the high-level
language. To tackle this problem in a general way, the model is broken down to
an intermediary graph-based format in which all expressions and subexpressions
of the original become separate variables, independent from how they were in-
troduced. In a second stage, the pieces are recombined (possibly in a different
way) to constraints for the low-level system, by pattern matching on parts of
this intermediary graph.

Section 2.1 describes the properties of the expected input model, while the
conversion to the broken-down intermediary format is described in Section 2.2.
Finally, the conversion to solver-specific constraints is shown in Section 2.3.

2.1 The expression tree

The algorithm expects a model as input, represented by an expression tree over
variables. It does not matter how this tree is constructed, or exactly which types
of nodes it can contain. We assume that basic arithmetic, relational and boolean
operators are present, as well as some array operations.

Working in the context of the functional language Haskell, we want higher-
order constructs to be first-class. Typically, constraint modeling languages sup-
port constructs like loops and sums. Instead, we encode them as higher-order
expression nodes in the tree:

– forall([e1, . . . , en],f) holds if fe1 ∧ . . . ∧ fen holds. When [e1, . . . , en] is a
sequence of successive values [i, i+1, . . . , n], this corresponds to a for loop.

– fold([e1, . . . , en],z,f) represents the expression f(e1, f(e2, . . . f(en, z) . . .)).
For instance, fold([a, b, c], 0,+) is equal to a + b + c. This construct is also
known under the name reduce, and can be used to represent a count, a sum,
or any other aggregate over an array of variables.

– map([e1, . . . , en],f) represents the array [f e1, f e2, . . . , f en]

Semantically, these expressions are equivalent to repeated application of a
function to an array of expressions. If we are compiling parametrized models
(problem classes, instead of instances) to C++ (see [11]), the size of certain arrays
may not be known at Haskell-runtime. By allowing these higher-order expressions
to refer to such “delayed” arrays, we do gain expressivity.

These primitives in the expression tree can be constructed by helper func-
tions. For example, cmap and csum (as used in Section 1.2), produce respectively
a map(array,f) and a fold(array,0,+).

2.2 Constraint Network Graph

As explained, the input model is transformed to an intermediary representation.
All subexpressions are replaced by additional variables and constraints. For ex-
ample, a < b+c would be broken up into the conjunction a < t1 ∧ t1 = b+c. Since
these constraints are recombined to more complex constraints in the next stage,
convenient access from a constraint to its variables and vice versa is needed. The
original expression tree does not make this information explicit. Instead, the set
of broken-down constraints is represented by a graph which does, a constraint
network graph. The nodes in this graph are variables, expressions and subexpres-
sions of the constraint model, while the edges are the constraints between them.
Since constraints are not necessarily binary, in general the edges are hyperedges
and the graph a hypergraph.

To encode higher-order expressions, we allow certain (hyper)edges to be la-
beled with a sub-graph that represents the constraint network graph of the inner

expression. This has several advantages over replacing them by the sequence of
direct constraints they represent (also called flattening or more specifically loop
unrolling):

– It allows the additional graph-based optimizations to be performed on the
problem class level, before instantiation of parameters.

– Creating a graph of the flattened model may well be very expensive, since
its size is proportional to the number of variables and constraints in the
instance.

– Unrolling is not possible if loop or array sizes depend on a parameter that
is not known at Haskell-runtime.

These internal graphs can have some nodes marked as imported from the par-
ent model. For example, the model b @= csum a evaluates to the expression
b = fold(a, 0,+), and the model b @= cmap (\x -> x + c) a evaluates to
b = map(a,+c). The corresponding constraint network graphs are shown in
Figure 1. The boxes and arrows represent the hyperedges/constraints, while the
circles represent the nodes/variables. The boxes for fold and map are labeled
with a new graph, with some nodes marked specially (init, arg and result).1

Since the variable c is not local to the cmap’s function argument (like x), it is
imported from the parent model’s Nc as N ′

c.

Na Nb

N1 N2 N3

init arg result

fold

+

Na

Nb

Nc

N1 N2

N ′

c

arg result

map

+

Fig. 1. submodels: b = fold(a, 0,+) and b = map(a,+c)

Translation from an expression tree to such a graph goes as follows:

– For every node in the tree a corresponding node in the graph is created. To
preserve variable identities, variables in the tree are reused as their corre-
sponding nodes in the graph.

– The relation between a tree node and its children is materialized as an edge
between the corresponding graph nodes.

For example, consider the expression a + b. The corresponding graph contains
three nodes: Na+b, Na and Nb, with a hyperedge labeled + among them.

1 A similar technique is used for quantified variables in e.g. forall.

Note that multiple occurrences of the same variable in the tree end up sharing
the same node in the graph, abandoning the tree invariant. The possibility of
sharing is further exploited by mapping identical subtrees onto the same graph
node. This essentially results in CSE (common subexpression elimination), which
is more thoroughly explored in [6].

Note that in the model, constraints are represented by boolean expressions.
Their return values denote their truth value. This means that they are all explic-
itly reified in the constraint network form. Since the point of a CSP (Constraint
Satisfaction Problem) is finding an assignment for the variables which causes the
model expression to evaluate to true, the truth value for the root node incurs an
additional constraint, equating it to the constant “true”.

Clearly, we do not want everything to be translated to reified constraints.
These are often less efficient, or may not even be supported by solvers.

A first step in preventing this is constant propagation. When a model consists
of c1(a, b) ∧ c2(a, b), a naive translation creates a constraint network with three
nodes for boolean variables in addition to a and b: v12, v1 and v2. The generated
constraints are v12 = true, v12 = v1 ∧ v2, c1,reif (a, b, v1) and c2,reif (a, b, v2).
Since v12 has value true, and v12 = v1 ∧ v2, v1 and v2 themselves must have the
value true. Comparable reasoning can be used to infer values when or and not

constraints are present. Although not strictly necessary, this information helps
choosing non-reified constraints when not required.

However, it does enable a simplification that compensates for the implicit
reification that is inherent to expressing all constraints as boolean expressions.
When an equality constraint between two nodes exists, with a truth value that
can be proven to be true using constant propagation, the constraint can be
dropped and the nodes unified. An example will clarify the matter: the constraint
model a = b+ c over the three variables a, b and c would be turned into a graph
with 5 nodes (Na, Nb, Na+b, Nc and Ntrue), and 3 constraints: Na+Nb = Na+b,
(Na+b = Nc) = Ntrue and Ntrue = true. In this case, the Na+b and Nc nodes
can be unified, which results in the simpler model with four nodes (Na, Nb, Nc,
Ntrue) and two constraints (Na+Nb = Nc) and Ntrue = true. Clearly the fourth
node and the second constraint are redundant, simplifying the result to a single
edge over three variables: Na +Nb = Nc.

2.3 Constraint Tiling

In the first phase of the compilation process, the high-level solver-independent
model has been disassembled into a solver-independent constraint network graph
for easier optimization. Now, in the last phase, the constraint graph is turned
back into a constraint model, but now of a solver-dependent and more low-level
nature. The nodes and edges of the graph are mapped to constraint variables
and constraints of the underlying constraint solver.

Our conversion algorithm is a tiling process, akin to instruction tiling in
compiler backends [1], that matches subgraphs against “tiles” supported by the
underlying solver. While we assume that small tiles are available for every type
of node and edge in the graph, preference is given to larger tiles that cover

+ + +

NtrueNtrue
= true= true

Na+bNa+b

NaNaNa NbNbNb

NcNcNc

=

Fig. 2. Optimization: unification of equal nodes

multiple nodes and edges. Note that the main difference with traditional tiling
is that we consider a graph structure rather than a tree structure. While this may
somewhat complicate matters, there is potentially more information available to
make good tiling decisions.

In a first step, we decide which nodes in the graph become the variables
of the resulting constraint problem, and how other nodes can be written as a
function of those, by “absorbing” edges into annotations on nodes. In a second
step, these annotations are used together with the remaining edges to generate
the final low-level constraints.

Example 1. Assume the following model expression:

x+ y + z ≤ z − y (1)

Further assume the underlying solver supports linear inequalities:

n∑

i=1

aivi ≤ c (2)

where ai and c are constants, and vi are variables. Clearly, the given constraint
(1) can be translated to a single linear inequality constraint, with ā = [1, 2, 0], v̄ =
[x, y, z], c = 0, or even simpler, with ā = [1, 2], v̄ = [x, y], c = 0.

The calculated constraint network (see Figure 3) has an edge corresponding
to the inequality, with nodes corresponding to x + y + z (N2) and z − y (N3).
Furthermore, N2 is connected using a + edge to the nodes corresponding to
x + y (N1) and z. To be able to match this as a single linear inequality, it is
necessary to know that all these nodes can be considered linear combinations of
other nodes. We capture this information in a node annotation linear(ā, v̄, c),
meaning:

linear(ā, v̄, c) = c+

n∑

i=1

aivi (3)

Recognizing that N2 is connected using a plus edge to two other nodes, one can
try to find out whether those two nodes can be considered linear combinations

N1

N2

N3

Nx Ny

Nz

Ntrue

+

+ −

≤

N1

N2

N3

Nx Ny

Nz

Ntrue

lin x+y

lin x+y+z

lin y-z

var x var y

var z

val true
+

+ −

≤

Fig. 3. Constraint Network Graph for x+ y + z ≤ z − y, unannotated and annotated

of other nodes as well (or simple constants or variables). Since one of them is
again connected using a plus to N1, this matching continues recursively while
traversing the graph. Eventually, nodes are reached that can no longer be con-
sidered linear combinations of other (not yet explored) nodes. These end nodes
become constraint variables, while all nodes on the paths from the inequality
to the end nodes, are considered linear functions of others. All this information
is materialized as an annotation on graph nodes, to avoid later recomputation.
Finally, using the following formula, the inequality is turned into the obvious
single linear inequality constraint:

linear(ā1, v̄1, c1) ≤ linear(ā2, v̄2, c2) ⇔

n∑

i=1

a1iv1i +

m∑

i=1

(−a2i)v2i ≤ c2 − c1 (4)

There are many more useful examples of annotations, including (potentially
parametrized) constant values, known sizes of array variables, and certain struc-
tures imposed by global constraints (such as alldifferent).

To recognize the patterns, we build them all simultaneously. We create an
annotation for every node in the graph, potentially using a trivial annotation
that describes it as a simple variable. To do so, we put all potential annotations
(called annotation generators) in a priority queue and process them one by one,
starting from those that have a chance to create a “better” annotation (one
for a constant value annotation is given highest priority, and one for a separate
variable lowest priority). Annotation generators may depend on the presence of
specific annotations on other nodes, in which case the corresponding generator
may be called prematurely, and removed from the queue.

There is a further complication: not each type of annotation may be im-
plemented or even be useful for every edge. For example, there is typically no
constraint that implements a division between linear combinations of variables.
Therefore the division edge should not support the linear annotation. Which
annotations are possible and useful depends on the solver.

The resulting algorithm is as follows:

1. For each edge type, the solver interface is asked which annotation types it
supports for its vertices, and which annotation generators are available.

2. Using a partial ordering on these generators, they are processed one by one:

– The generator is skipped if it would not produce any useful annotation.
This is the case if it is for a node which is already fully specified (anno-
tations compatible with all its edges have been created already).

– The generator can request annotations (of a particular type) of neigh-
boring nodes. This fails if a dependency loop occurs or no generator for
that node/type combination exists. Otherwise the respective generator
is invoked, its resulting annotation stored, and passed back to the calling
generator.

– Based on this information, the calling generator as a whole may fail, or
create the annotation.

– If this results in a second annotation for a same node, an artificial equal-
ity constraint between it and the earlier one is added.

3. New constraint variables are created for all remaining nodes.

4. Finally, the remaining edges and annotations for their vertices are passed to
the solver interface to produce low-level constraints.

The result is an eager matching algorithm that consumes edges in the graph
by describing some nodes in it in function of other nodes, possibly recursively.
Nodes for which this is not possible become simple constraint variables, and
edges for which this is not possible become real constraints.

3 Implementation

The techniques described in the previous section were used in a new finite domain
layer for MCP [7]. It consists of:

– a general component for creating expression trees in Haskell, and performing
simplifications on them.

– a high-level modeling front-end, on top of MCP’s monad[9]-based technique
for writing models

– a translation layer based on the previous section, exposing an MCP solver
interface that uses high-level boolean expressions as constraints, delegating
the real propagation and pruning to an underlying solver

– some instances of MCP solver interfaces that support interaction with the
FD layer, which use a Gecode[3] interface: two runtime back-ends and a
code-generation back-end

This allows FD constraint problems to be written as a Haskell program using
the declarative syntax, which can be run to either solve the problem directly, or
generate C++ code that will search for solutions when compiled and run.

3.1 Expression trees

The general expression component provides three basic expression types: booleans,
integers and arrays of integers. We do not fix the type of variables these expres-
sions can refer to yet, so they can be used independently. Without going into
details, they are very conveniently represented by Haskell’s algebraic data types.

Using Haskell’s support for defining new operators and overloading operators
from certain predefined classes (such as +, - and *), it is possible to create
a concise syntax for writing expression trees. Simple pattern-matching based
simplification rules are applied on the trees while building them. For example, 5
+ 3 evaluates to the constant 8, while 2*a-a+3 evaluates to a+ 3.

Higher-order constructs are equally easy to represent. Since Haskell is a true
functional language, it allows storing the inner functions for map, fold and
forall as first-class elements in the expression tree.

Here is a full list of supported operators and functions:

– Overloaded operators: +, -, *
– Overloaded functions: div, mod, abs, negate, succ, pred
– Arithmethic operators: @/, @%
– Array operators: indexing (!, @!!), range (@..), concatenation (@++)
– Equality: @=, @/=
– Inequality: (@/=, @<, @>, @>=, @<=)
– Boolean: @||, @&&, inv, channel
– Conditional: boolean: @?, integer: @??
– Higher order: cfold, cmap, slice, loopall, loopany, forall, forany
– Array functions: chead, ctail, list, size, csum
– Global constraints: sorted, allDiff, allin

3.2 Modeling layer

The modeling layer provides a way for writing high-level constraints using a
common FD syntax. As said, boolean expressions are used as constraints. To
this end, we use the expression tree component described in the previous section,
using unique identifiers as terms.

In MCP, a constraint model is a monadic action that creates constraint vari-
ables, adds constraints, creates branchings, and returns solutions. Traditionally,
constraints are added in MCP through the use of the add function. This would
require a model for the problem x > 5∧x < 10∧x2 = 49 to be written like this:

1 model = exists $ \x -> do -- request a variable x

2 add $ x @> 5 -- state that x>5

3 add $ x @< 10 -- state that x<10

4 add $ x*x @= 49 -- state that x*x=49

5 return x -- return x

To avoid the need for calling add for each constraint, alternative versions of
the boolean operators are created that implicitly call the add function, instead

1 {-# LANGUAGE TypeFamilies #-}

2

3 import Control.CP.FD.Example

4

5 -- diff: the differences between successive elements of an array

6 diff l = exists $ \d -> do -- request an (array) variable d

7 let n = size l -- introduce n as alias for size l

8 size d @= n-1 -- size of d must be one less than n

9 loopall (0,n-2) $ \i -> do -- for each i in [0..n-2]

10 d!i @= abs (l!i - l!(i+1)) -- d[i] = abs(l[i]-l[i+1])

11 return d -- and return d to the caller

12

13 model :: ExampleModel ModelInt -- type signature

14 model n = -- function ’model’ takes argument n

15 exists $ \x -> do -- request an (array) variable x

16 size x @= n -- whose size must be n

17 d <- diff x -- d is the "diff" of x

18 x ‘allin‘ (0,n-1) -- all x elements are in [0..n-1]

19 d ‘allin‘ (1,n-1) -- all d elements are in [1..n-1]

20 allDiff x -- all x elements are different

21 allDiff d -- all d elements are different

22 x @!! 0 @< x @!! 1 -- some symmetry breaking

23 d @!! 0 @> d ! (n-2) -- some symmetry breaking

24 return x -- return the array itself

25

26 main = example_main_single_expr model

Fig. 4. The AllInterval problem in FD-MCP

of simply returning a boolean expression. Furthermore, operators that used to
take boolean expressions as arguments are modified to first convert the adding
of a constraint to the constraint itself.

Figure 4 shows a full Haskell program for the AllInterval problem. The aim is
to find a sequence of numbers of size n, where each number is different, between
0 and n− 1, and the absolute values of differences between subsequent elements
take all values between 1 and n− 1. Using monadic composition, we are able to
abstract the creation of the difference array in a separate function (diff, lines
6–11), although it introduces an additional variable, and call it on line 17. Note
the use of size l within the diff function. The implementation only supports
arrays for which a (parametrized) size expression can be derived. Because of
node unification, this is easy in this case: line 16 equates it to n.

3.3 FD layer

The actual FD layer integrates the high-level modeling layer described in the
previous section with the MCP framework itself. Given an MCP solver that sup-

ports the FD interface, it provides a wrapped solver, which accepts the boolean
expressions from the modeling layer as constraints instead of the constraints from
the underlying solver. When constraints are posted to this wrapper-solver, they
are accumulated until branching occurs, to take advantage of inter-constraint
optimizations as described in Section 2.2. When this happens, all accumulated
constraints are processed by an implementation of the tiling system described
in Section 2. Expressions are converted to the constraint network graph, node
annotations are calculated, and remaining edges translated to constraints. Im-
plemented annotation types include constant values, linear combinations of vari-
ables, constant arrays and subsequences of arrays.

As explained earlier, the graph representation can have edges that are labeled
with a sub-graph, to represent higher order constraints without flattening them.
Since typical solvers do not have any notion of loop constructs or arrays of
indeterminate size, the FD layer provides default flatteners for all higher-order
constructs, available as mixins.

3.4 Gecode interface

Although not the only back-ends, the Gecode-based solvers form the largest part
of the implementation. Three different solvers exist:

– Two solvers that use the Gecode library at runtime through Haskell’s Foreign
Function Interface
• RuntimeSolver: uses MCP’s own search and branching, but sends
posted constraints to C++, and retrieves variable domains from it

• SearchSolver: delegates even search and branching to Gecode, by gen-
erating a search-tree in Haskell in which each node corresponds to search-
ing one full solution in C++

– CodegenSolver: a pseudo-solver which does not actually do any propaga-
tion or pruning, but instead records all created variables and posted con-
straints. Afterwards, this information is used to generate a C++ program,
that after compilation will use Gecode to search for solutions, bypassing all
of Haskell’s overhead at runtime.

Of particular importance here is the support for higher-order constraints.
The Gecode layer’s constraint representation does support some higher-order
constructs, to allow the code generation backend to create parametrized code.
A side-effect is the ability to have higher-order class-level optimizations that are
specific to the supported constraints. Three such optimizations are implemented
for the fold construct: one using an addition over a channeled equality test be-
comes a count constraint, a simple addition becomes a sum, and an addition
over an arbitrary function of the input becomes a sum combined with a map.
These are implemented as pattern-matches on the sub-graph inside the Fold

edges, during the final stage (mapping to solver-specific constraints) of the tiling
process. When such optimizations are not possible, the higher-order constructs
are converted to loops or flattened, and remaining nodes in the inner graph to
constraint variables introduced by the loop body, or to a separate variables per
loop iteration when flattening.

4 Evaluation

To verify the quality of the translation, a set of classic CP problems were ported
to FD-MCP, resulting in smaller code on average, and benchmarked.We compare
the runtimes of original C++ Gecode implementations against runtimes of our
Gecode-backed solvers, as well as the runtime of the code generated by the C++

code generation pseudo-solver.
Table 1 shows the measured solving times3, code generation time, compi-

lation times and lines of code (not including instance data, output routines or
main functions). The columns marked a) refer to original Gecode benchmarks in
C++, those marked b) to MCP-generated C++, those marked c) to direct solving
using FD-MCP’s SearchSolver, and those marked d) to direct solving using FD-
MCP’s RuntimeSolver. The numbers clearly show that generated C++ code has
very close or even slightly better performance than the original benchmark. The
latter does some additional bookkeeping and has more options, sometimes result-
ing in slightly higher overhead. On the other hand, the generated code sometimes
contains a small amount of superfluous variables, causing inefficiencies. Before
higher-order constructs were introduced, this amount was much higher, with
significantly slower solving as a result. When comparing with the direct solvers,
larger differences occur. When using Gecode’s search, the overhead of switching
from Haskell to C++ and back for each constraint can become significant, eg.
in the queens benchmark. When using MCP’s search, this overhead also occurs
during search, resulting in significantly lower performance.

5 Related work

Different languages and systems for CP modeling and solving exist:
Like FD-MCP, the Tailor[6] system attempts to present a high-level modeling

interface to the user, with optimizations to prevent inefficient solving caused by
users unfamiliar with the intricacies of CP. However, it is a separate tool that
processes specific modeling languages (Essense’ and XCSP), and translates them
to Minion, FlatZinc or Gecode programs. It lacks the flexibility MCP provides
when solving directly, yet provides rather advanced model optimizations.

The Zinc[4] family of languages (including MiniZinc and FlatZinc) provide
an extensive framework for translating from high-level models to flattened and
solver-specific input. The translation is based on a rule-based system called ACD
Term Rewriting[2], which performs transformations directly on the syntax tree.
Zinc provides comparable higher-order constructs (only over arrays of known
length), and converts boolean combinations of constraints to reified constraints.

2 csplib 7: allinterval, csplib 28: bibd (6,10,5,3,2), efpa: (5,3,2,4), csplib 6: golomb
rulers, csplib 19: magic square and magic sequence, csplib 49: partition

3 Benchmarks performed on a Intel Core 2 Duo E8500 system with 4GiB RAM, run-
ning 64-bit Ubuntu 10.04, GHC 6.12.1, Gecode 3.2.1 and MCP 0.7.0. C++ bench-
marks were modified to use the same search order and strategy as FD-MCP. Run-
times are averages over running each instance for 10 minutes.

name2 size
Solving time Compile/codegen time Lines of code

C++ MCP codegen GCC GHC C++ Haskell
(a) C++(b) Search (c) Run (d) (b) (a) (b) (b-d) (a) (b) (b-d)

allinterval 7 0.0041 0.0041 0.0087 0.011 0.0063 1.3 0.87 0.032 26 113 18
8 0.0045 0.0047 0.0099 0.016
9 0.0066 0.0069 0.013 0.035
10 0.016 0.018 0.025 0.12
11 0.065 0.077 0.084 0.56
12 0.32 0.38 0.38 2.8
13 1.8 2.1 2.1 15
14 10 12 12 84
15 61 71 72 -

alpha 0.0045 0.022 0.026 0.023 1.1 .045 0 276 30
bibd 0.0041 0.0053 0.11 0.11 0.01 1.3 0.88 0.042 87 146 16
domino 0.0096 0.0098 0.064 0.09 0.022 1.4 0.99 0.041 61 140 28

0.044 0.041 0.097 0.52
efpa 0.0045 0.0051 0.09 0.093 0.0099 1.8 0.96 0.044 105 177 15
golombruler 6 0.0042 0.0042 0.027 0.031 0.01 1.3 0.9 0.044 41 149 23

7 0.0074 0.0083 0.04 0.067
8 0.042 0.048 0.089 0.27
9 0.35 0.4 0.44 1.7
10 3.2 3.5 3.4 13
11 81 90 82 -

graphcolor 0.12 0.12 1.2 1.2 0.022 1.3 0.86 0.032 55 124 15
grocery 0.099 0.099 0.094 0.099 0.0063 1.3 0.86 0.039 26 96 8
langford 10 3 0.009 0.009 0.04 0.045 0.0078 1.3 0.88 0.033 77 121 19
magicseries 10 0.004 0.004 0.0099 0.01 0.0063 1.3 0.87 0.033 28 120 11

20 0.0041 0.0041 0.016 0.017
50 0.0046 0.0044 0.036 0.039
75 0.0055 0.0049 0.053 0.059
100 0.0067 0.0054 0.073 0.082
200 0.017 0.0096 0.16 0.19
375 0.061 0.027 0.34 0.43
500 0.12 0.049 0.52 0.67
1000 0.94 0.29 1.7 2.2

magicsquare 3 0.0039 0.0039 0.012 0.012 0.011 1.4 0.89 0.043 37 116 20
4 0.0082 0.0092 0.021 0.079
5 0.4 0.48 0.62 110
6 0.0043 0.0043 0.022 -
7 2.6 2.9 4.5 -

minesweeper 0.004 0.0044 0.43 0.44 0.012 1.3 0.86 0.033 78 113 20
partition 10 0.0046 0.0044 0.011 0.023 0.0062 1.4 0.91 0.043 43 138 24

14 0.0088 0.008 0.018 0.39
18 0.019 0.016 0.036 9.8
20 0.054 0.046 0.086 33
22 0.16 0.14 0.24 160
24 0.55 0.47 0.8 -
26 0.57 0.48 0.83 -
28 1.9 1.6 2.8 -
30 5 4.3 7.3 -
32 6.5 5.6 9.6 -

queens 8 0.004 0.0039 0.019 0.02 0.0067 1.3 0.85 0.033 26 104 10
10 0.004 0.0039 0.026 0.028
13 0.0043 0.0042 0.042 0.043
21 0.0041 0.0041 0.1 0.16
34 0.0046 0.0044 0.25 -
55 0.008 0.0076 0.65 -
70 0.0082 0.0074 1 -
89 0.012 0.011 1.7 -
100 0.015 0.013 2.1 -
111 0.089 0.089 2.8 -

Table 1. Benchmark results

The multi-paradigm Mozart[8] programming system, based on the Oz lan-
guage, includes support for constraint programming in a flexible and declarative
way. Constraint solving concepts such as spaces are provided first-class in the
system. It seems however mostly focused on the ability to program search and
propagation, and lacks high-level modeling features such as writing constraints
as expressions.

6 Conclusion and future work

We have shown how to extend FD-MCP with support for expression-based
constraints and first-class higher order constructs. Furthermore a compilation
scheme was designed that maps these high-level models to low-level solver-
specific ones. These ideas were implemented and benchmarks show that the
resulting performance is often comparable to native C++ Gecode benchmarks.

Future work includes extending the system with more specific optimizations,
more global constraints and additional data types. Having created an abstraction
for FD constraint modeling that supports compilation to C++ code in addition to
direct solving, the same should be done for the branching and searching parts of
CP. First by providing the ability to choose a search strategy from a predefined
list, later by generating C++ code based on a specification in MCP.

References

1. A. W. Appel. Modern Compiler Implementation in C, chapter Instruction Selec-
tion. Cambridge University Press, 1998.

2. G. J. Duck, P. J. Stuckey, and S. Brand. ACD term rewriting. In S. Etalle and
M. Truszczynski, editors, ICLP, volume 4079 of LNCS, pages 117–131, 2006.

3. Gecode Team. Gecode: Generic constraint development environment, 2006. Avail-
able from http://www.gecode.org.

4. K. Marriott et al. The design of the Zinc modelling language. Constraints,
13(3):229–267, 2008.

5. S. Peyton Jones et al. The Haskell 98 language and libraries: The revised report.
Journal of Functional Programming, 13(1):0–255, Jan 2003.

6. A. Rendl. Effective Compilation of Constraint Models. PhD thesis, University of
St. Andrews, January 2010. http://www.cs.st-andrews.ac.uk/~andrea/.

7. T. Schrijvers, P. Stuckey, and P.Wadler. Monadic constraint programming. Journal
of Functional Programming, 2009.

8. M. Team. The mozart programming system, 2004. Available from http://www.

mozart-oz.org/.
9. P. Wadler. Monads for functional programming. In Advanced Functional Program-

ming, pages 24–52, London, UK, 1995.
10. P. Wuille and T. Schrijvers. Monadic Constraint Programming with Gecode. In

Proceedings of the 8th International Workshop on Constraint Modelling and Re-
formulation, pages 171–185, 2009.

11. P. Wuille and T. Schrijvers. Parametrized models for on-line and off-line use.
In Preliminary proceedings of the 19th International Workshop on Funcional and
(Constraint) Logic Programming, pages 65–79, 2010.

